Greenhouse Gas Emissions Estimates from One Year of Measurements at Two Towers in Central California and Complementary Aircraft Measurements

CEC Annual 20090910

M.L. Fischer (mlfischer@lbl.gov), C. Zhao - LBNL

A. Andrews, L. Biacno, E. Dlugokencky, A. Karion, S. Montzka, C. Sweeney - NOAA Earth System Research Laboratory

S. Surapali, T. Sherwood - Kalscott Engineering

D. Day, I. Faloona - UC Davis

J. Eluszkiewicz, T. Nehrkorn - AER Inc.

C. MacDonald - STI Inc.

Acknowledgements: J. Bogner, E. Crossen, E. Kort, J. Lin, C. Potter, W. Salas, T. Szegvary, P. Tans, S.C. Wofsy

This work is supported by the California Energy Commission's Public Interest Environmental Research Program, NOAA Office of Global Programs, and the US Department of Energy

Outline

- Overview of California's GHG Emissions
- The California Greenhouse Gas Emission Measurement Project (CALGEM)
- CH₄ Emissions Estimates for Central CA
- Design of a Regional GHG Emissions Measurement Network
- Airborne Greenhouse Gas Survey project (AGES)
- Conclusions

California GHG Emissions

- Non-CO₂ GHG emissions comparable to CO₂ but...
 - Largely from biological sources and not readily metered
 - Uncertainties in inventories are large
- Atmospheric inverse approaches provide independent check

CEC, 2006

1.5 yr Measurements at Walnut Grove

- Impact of regional emissions are clearly visible in measured data
- Strong diurnal cycles due to boundary layer mixing variations
- Seasonal cycles due in emissions and boundary layer mixing

Focus on Walnut Grove CH₄ and N₂O

CH₄ and N₂O share similar patterns (both dominated by valley emissions)

Fall-Winter (Oct - Dec, 2007) WGC 91 m, Well Mixed, 1400 Local

a priori CH₄ Flux Maps

- Crop Agriculture (Salas)
- Landfill (point sources)
- Livestock (USDA)
- Natural gas dist./use
- Petroleum refining and use
- Wetlands (Potter et al.)
- Above sum to CA-specific
- EDGAR3.2 (1x1degree)
 - Landfills and petroleumextraction and refining ~2 x CA estimates
- Also: regional subdivision for spatial analysis

WRF-STILT Footprints for WGC Tower

- WRF meteorology:
 - Nested grids (40,8,1.6 km)
 - NARR boundary forcing
 - Hourly averaged fields
- Example of average footprint for Oct-Dec, 2007 from hourly maps
- Largest surface influences (purple) for Bay Area and Central Valley
- Predict CH₄ signal =
 F_{CH4} * footprint +
 Marine Background

Uncertainty Estimates

- Error sources are quantified
- Errors are propagated through modeling system to provide quantitative uncertainty in estimated emissions
 - Boundary layer ~ 25 %
 - Wind Velocity ~ 10%
 - GHG background ~ 15 %
 - Inventory resolution ~ 8 %
 - Other ~ 8%
- Quadrature sum ~ 32%

Predicted vs. Measured CH₄ By Season

- Scatter approximately consistent with estimated uncertainties
- CH₄ emissions appear under-estimated in CA inventory for winter and spring periods
- Fire signal clearly visible in June 2008
 - Exclusion of fires CH₄ suggests assumed inventory emissions approximately correct for summer period

Estimated CH₄ Emissions (MMT CO_{2equiv})

- Baysian estimate of scaling factor for each emission source or region (*a priori* errors assigned at 30%)
- Source analysis: only livestock significantly different from prior (x 1.6 ± 0.15)
- Region analysis:

 only regions near WGC
 tower have errors reduced
 regions 7 & 8 are larger
 than prior, consistent with source analysis

(Zhao et al., 2009, Journal Geophys. Res.)

Winter-Spring Measured and Predicted N₂O

- N₂O flask data is sparse compared to in situ CH₄
- Slopes vary with season
 - Fall 2007 slope near unity: approximate agreement with inventory emissions
 - Spring: slope ~ 1/2, suggesting actual emissions ~ 2 x inventory

Measurement Network Design

- Estimate effect of seven (3 valley, 4 costal) tower network
- WRF-STILT footprints show predicted regional coverage for Oct, 2007
- Psuedo-data generated from footprints, inventory CH4 emissions, and 32% random noise as estimated above
- Regional inverse estimates of posterior scaling factors show reduction in uncertainties for most regions (Fischer, et. al, 2009, CEC)

Airborne Greenhouse Gas Survey (AGES)

- Kalscott-LBNL DOE-SBIR to survey regional GHGs sources from small aircraft
- June, 2008 and March, 2009 campaigns from Napa CA
- Instruments
 - Picarro CO₂/CH₄
 - Aerolaser UV Florescence CO
 - NOAA -12 Flask Package
- Observations of CO₂ over Sacramento urban area and Central Valley agriculture

Conclusions

- Careful attention to uncertainties essential for quantitative emission inventory assessment
 - Measurement errors are now small compared to other sources
- Meteorological uncertainty assessment requires multiple measurement sites and methods (e.g., wind profilers, tracer gases)
- Initial inverse estimates suggest:
 - CH₄ emissions underestimated in Central CA Valley region
 - N₂O emissions also underestimated but vary significantly with season
- Even tall-tower measurements in valley appear to only constrain ~
 100-200km region surrounding tower (483 m height decouples)
- Network of towers required to capture regional emissions from California

